

Microwaves

Anja Skrivervik anja.skrivervik@epfl.ch, 021 693 4635

Summary (microwaves)

- Introduction and applications
- A short reminder transmission line theory
- An introduction to waveguides
- Microwave circuit theory
- Microwave components
- Microwave filters
- An introduction to microwave measurements

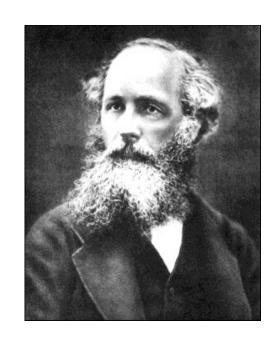
Course form

- ex cathedra
- supervised and unsupervised exercises
- handouts and corrections on the web (Moodle)
- Two tests (16th of November and 14th of December)

History

1872	Publication of "a treatise on electricity and magnetism" by James Clerk Maxwell	
1887	Publication of Oliver Heaviside's comments on Maxwell's work	
1887	Lord Rayleigh proves theoretically the concept of waveguides	
1891	Experimental verification of Maxwell's theory by Heinrich Herz	
1901	First transatlantic wireless link by Guglielmo Marconi	
1903	Regular wireless telegraphic service	
1918	First tubes and continuous wave generators	
1920	First use of frequency shifters in detectors, mixers, and receivers	
1921	First transatlantic link in medium waves	
1938	First Portable phone (Motorola)	

History


1936	Simultaneous rediscovery of the waveguide concept by G.C. Southworth and W.L. Barrow	
1938-19	945 : intensive research on RADAR	
1948	Distributed filter theory by Richards	
1950	First cavity filters	
1950	Introduction of planar microwave transmission lines (first stripline, then microstrip)	
1950	Apparition of TWT amplifiers	
1960	Apparition of the first microwave transistors	
1970	First MMICs	
1971	First CAD tools	

EPFL

Maxwell's equations (Telecom style)

$$\nabla \times \mathbf{H} = \mathbf{J} + \varepsilon \frac{\partial \mathbf{E}}{\partial t}$$

$$\nabla \times \mathbf{E} = -\mu \frac{\partial \mathbf{H}}{\partial t}$$

Electric currents Varying in space and time acting in a specific medium create

electromagnetic waves

Maxwell - Heaviside

$$\frac{dQ}{dz} - \frac{dR}{dy} = \mu \frac{d\alpha}{dt}$$

$$\frac{dP}{dy} - \frac{dQ}{dx} = \mu \frac{d\gamma}{dt}$$

$$\frac{dR}{dx} - \frac{dP}{dz} = \mu \frac{d\beta}{dt}$$

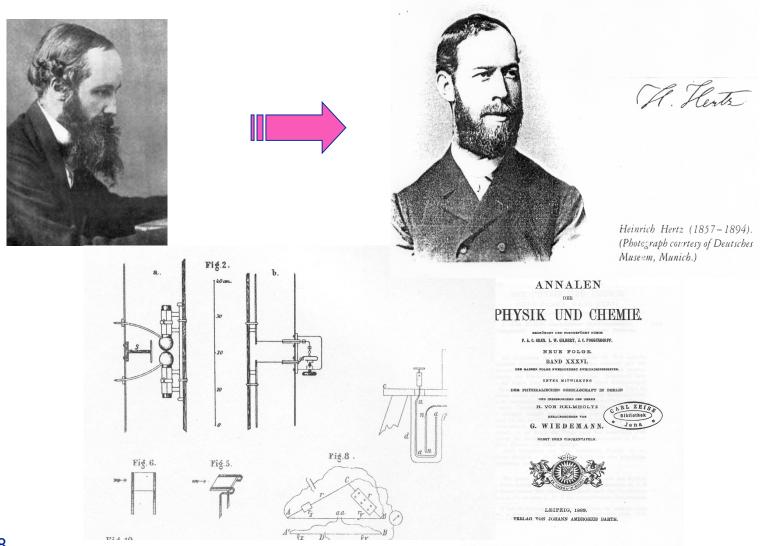
$$\frac{dQ}{dz} - \frac{dR}{dy} = \mu \frac{d\alpha}{dt}$$

$$\frac{dP}{dy} - \frac{dQ}{dx} = \mu \frac{d\gamma}{dt}$$

$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$$

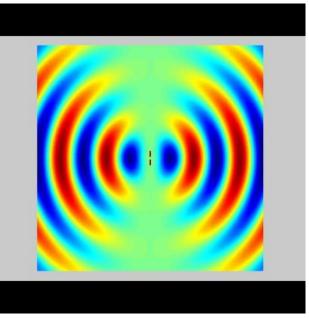
$$p = \frac{1}{4\pi} \left(\frac{d\gamma}{dy} - \frac{d\beta}{dz} - \frac{1}{\varepsilon^2} \frac{dP}{dt} \right)$$

$$q = \frac{1}{4\pi} \left(\frac{d\alpha}{dz} - \frac{d\gamma}{dx} - \frac{1}{\varepsilon^2} \frac{dQ}{dt} \right)$$

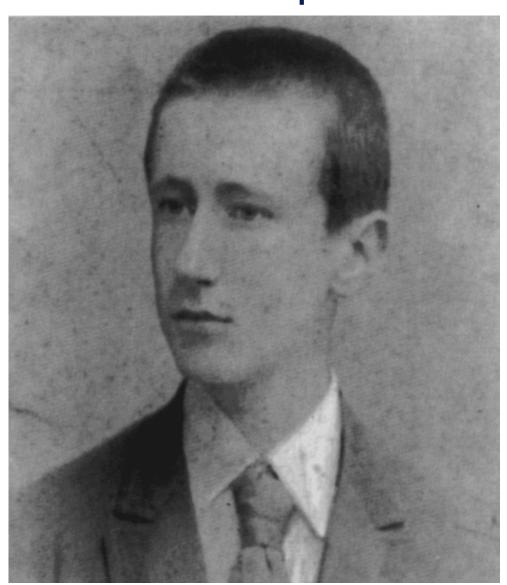

$$r = \frac{1}{4\pi} \left(\frac{d\beta}{dx} - \frac{d\alpha}{dy} - \frac{1}{\varepsilon^2} \frac{dR}{dt} \right)$$

$$r = \frac{1}{4\pi} \left(\frac{d\beta}{dx} - \frac{d\alpha}{dy} - \frac{1}{\varepsilon^2} \frac{dR}{dt} \right)$$

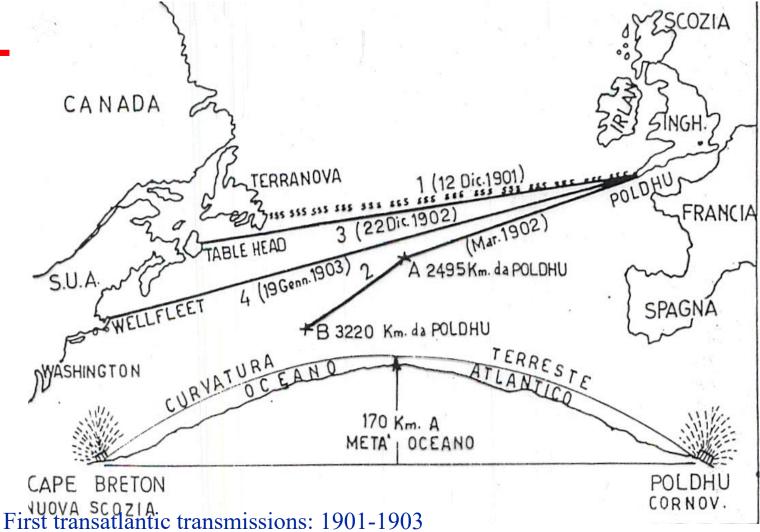
$$\nabla \times \mathbf{H} = \frac{\partial \mathbf{D}}{\partial t} + \mathbf{J}$$


From Maxwell (1865) to Hertz (1888)

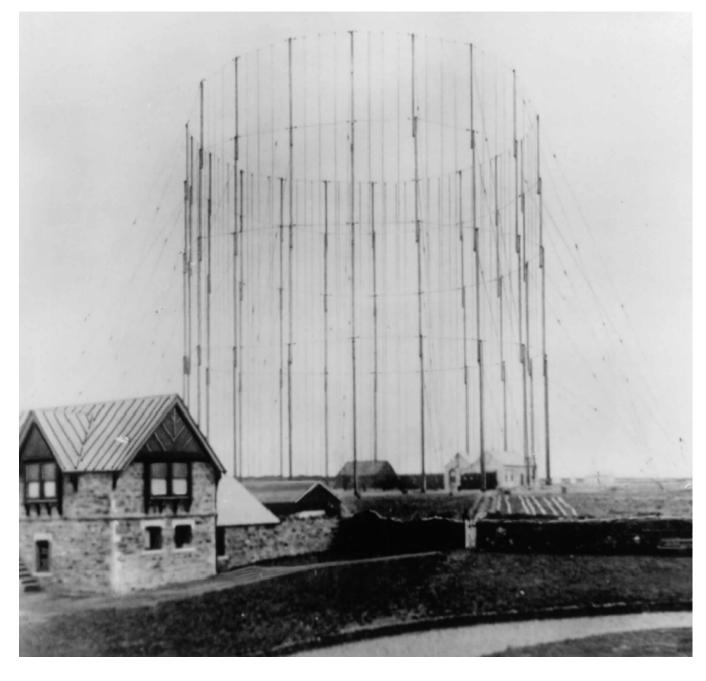
Herzian dipole



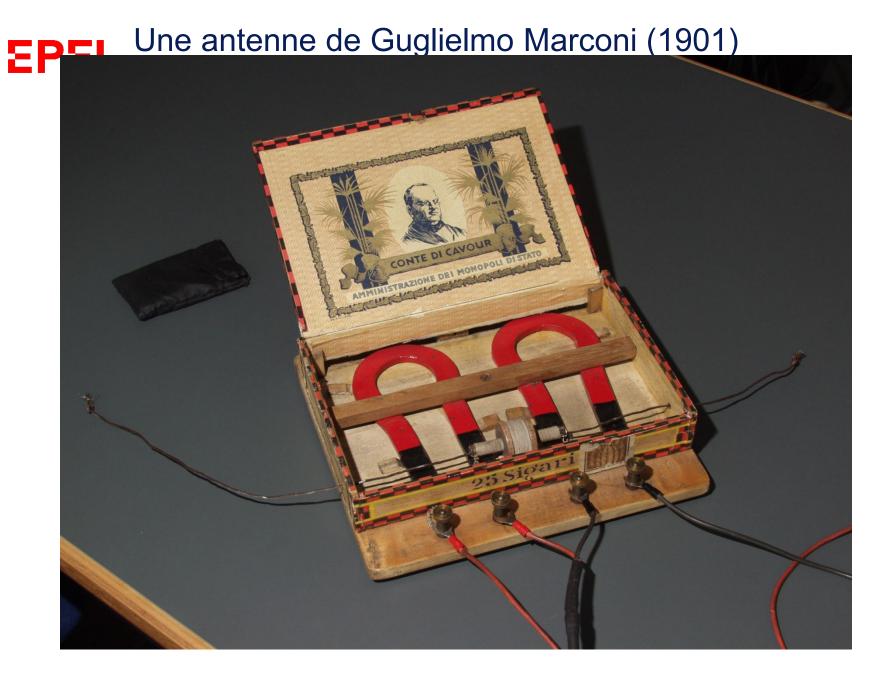
History


1872	Publication of "a treatise on electricity and magnetism" by James Clerk Maxwell
1887	Publication of Oliver Heaviside's comments on Maxwell's work
1887	Lord Rayleigh proves theoretically the concept of waveguides
1891	Experimental verification of Maxwell's theory by Heinrich Herz
1901	First transatlantic wireless link by Guglielmo Marconi
1903	Regular wireless telegraphic service
1918	First tubes and continuous wave generators
1920	First use of frequency shifters in detectors, mixers, and receivers
1921	First transatlantic link in medium waves
1938	First Portable phone (Motorola)

Marconi: A pioneer's work



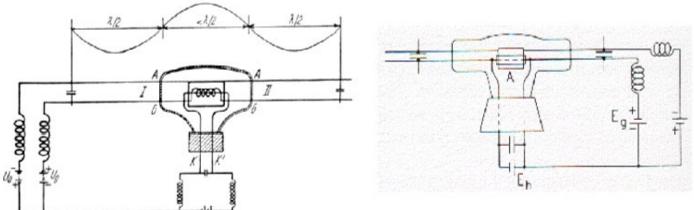
- 1- Poldhu St. John 12 December 1901 3400 km
- 2- Poldhu Philadelphia (ship) March 1902 discovery of night effect
- 3- Activation of the link Glace Bay Poldhu 22 December 1902
- 4- Activation of the link Cape Cod Poldhu 19 January 1903

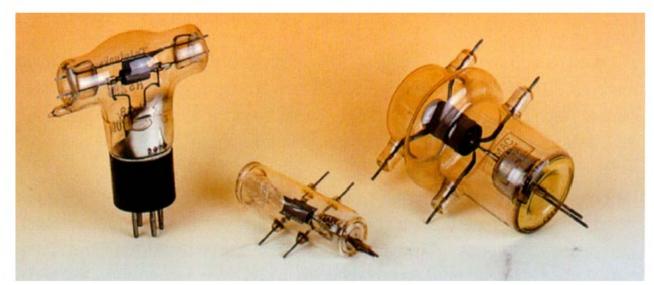


Marconi:

Despite the opposition which I had received from many quarters, often that of most eminent men, it was still my opinion that electric waves would not be stopped by the curvature of the earth, and therefore could be made to travel any distance, separating any two places on our planet. From the very first of my experiments, I was sincerely convinced of this (Jacot and Collier, 1935: 64).

Photograph of the original conical antenna system installed at Poldhu, Cornwall (after **BAE Systems** Marconi Research Centre, Chelmsford, Essex)



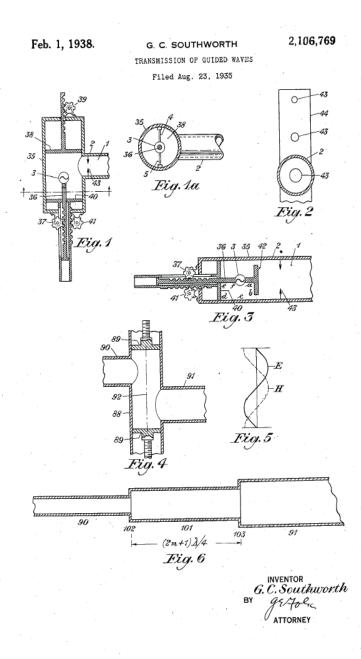

History

1872	Publication of " a treatise on electricity and magnetism" by James Clerk Maxwell	
1887	Publication of Oliver Heaviside's comments on Maxwell's work	
1887	Lord Rayleigh proves theoretically the concept of waveguides	
1891	Experimental verification of Maxwell's theory by Heinrich Herz	
1901	First transatlantic wireless link by Guglielmo Marconi	
1903	Regular wireless telegraphic service	
1918	First tubes and continuous wave generators	
1920	First use of frequency shifters in detectors, mixers, and receivers	
1921	First transatlantic link in medium waves	
1938	First Portable phone (Motorola)	

EPFL

Microwave tubes

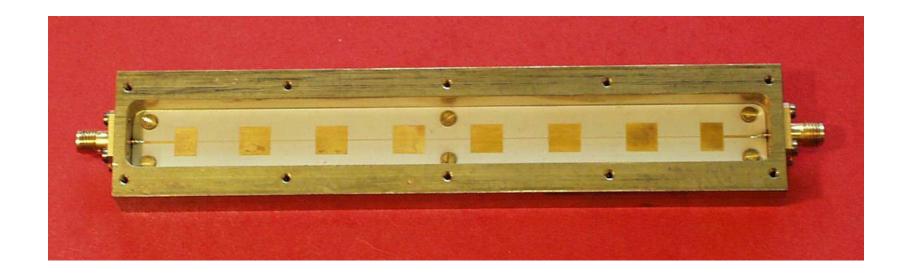
Retarding-field tube RS296 and its circuit (Kühle 1932 at Telefunken)


"Hammer Tube" [8,11]. The photograph also shows the retarding field tubes 8012 of RCA (middle) and VT 127 A of Eimac (right)

History

1936	Simultaneous rediscovery of the waveguide concept by G.C. Southwortl and W.L. Barrow	
1938-1945 : intensive research on RADAR		
1948	Distributed filter theory by Richards	
1950	First cavity filters	
1950	Introduction of planar microwave transmission lines (first stripline, then microstrip)	
1950	Apparition of TWT amplifiers	
1960	Apparition of the first microwave transistors	
1970	First MMICs	
1971	First CAD tools	

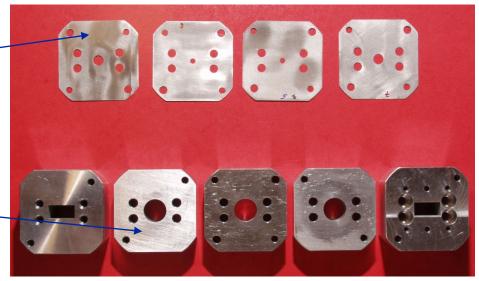
1st page of patent by Southworth



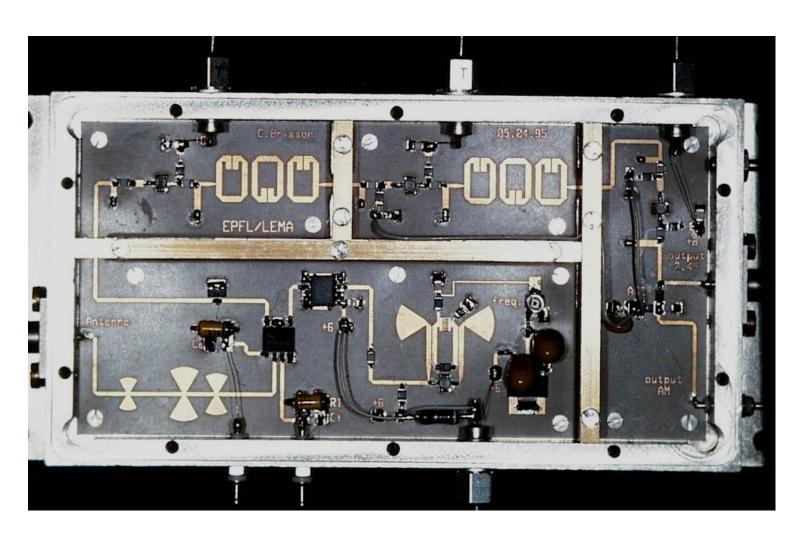
History

1936	Simultaneous rediscovery of the waveguide concept by G.C. Southworth and W.L. Barrow	
1938-1945 : intensive research on RADAR		
1948	Distributed filter theory by Richards	
1950	First cavity filters	
1950	Introduction of planar microwave transmission lines (first stripline, then microstrip)	
1950	Apparition of TWT amplifiers	
1960	Apparition of the first microwave transistor, 1963: Gunn diode	
1970	First MMICs	
1971	First CAD tools	

example of distributed filter: LPF realized in microstrip technology

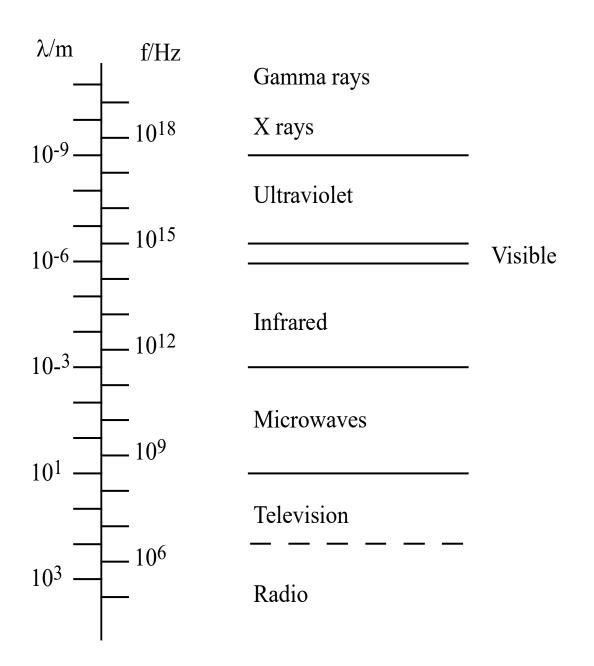

EPFL

cavity filter (exploded)


irises

waveguide sections

example of microstrip circuit: complete 2.45 GHz transceiver



Definition of microwaves

Frequency (f)	300 MHz-300 GHz
Period (T)	3 ns - 3 ps
Wavelength (λ)	1 m - 1 mm
Energy (hf)	1.2 10 ⁻⁶ eV - 1.2 10 ⁻³ eV

Band	Frequenc y
L	1-2 GHz
S	2-4 GHz
С	4-8 GHz
X	8-12 GHz
Ku	12-18 GHz
K	18-26 GHz
Ka	26-40 GHz
Q	40-60 GHz
Е	60-90 GHz

Properties of microwaves

- Bandwidth
 - 1% of 10 GHz = 100 MHz, but 1% of 100 MHz =
 1MHz
- Transparency of the lonosphere
 - Satellites

4 layers: D, E, F1, F2

altitude: circa 70-800 km

$$\varepsilon_e = \varepsilon_0 \left(1 - \frac{\omega_p^2}{\omega^2} \right) \qquad \qquad \omega_p = \sqrt{\frac{Nq^2}{m\varepsilon_0}}$$

N: number of ions/volume

q: charge of the electron

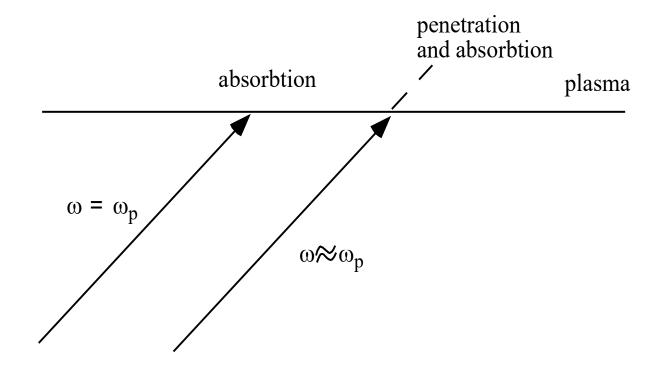
m: mass of the electron

 ϵ_0 = 8.854 10-12 As/Vm : permittivity of free space.

 $\omega \ll \omega$

$$\mathcal{E}_{\scriptscriptstyle e} \to -\infty$$

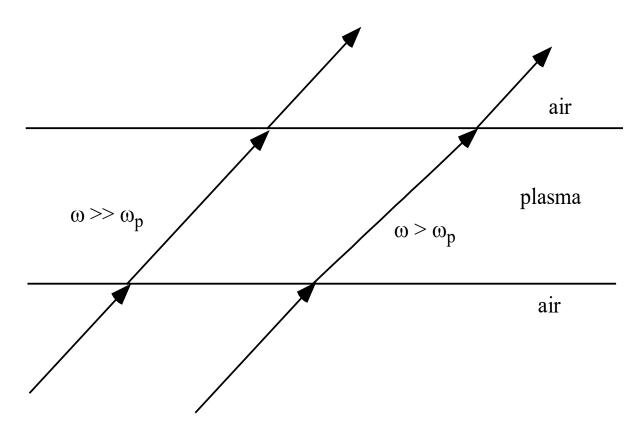
$$Z = \sqrt{\frac{\mu}{\varepsilon}} \to j0$$



$$\omega = \omega p$$

$$\varepsilon_{\rm e} \to 0$$

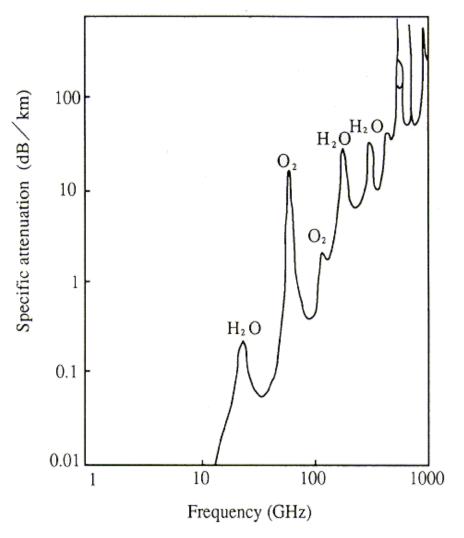
$$k = \omega \sqrt{\varepsilon \mu} = 0$$



 $\omega >> \omega p$

$$\varepsilon_{\rm e} \rightarrow 1$$

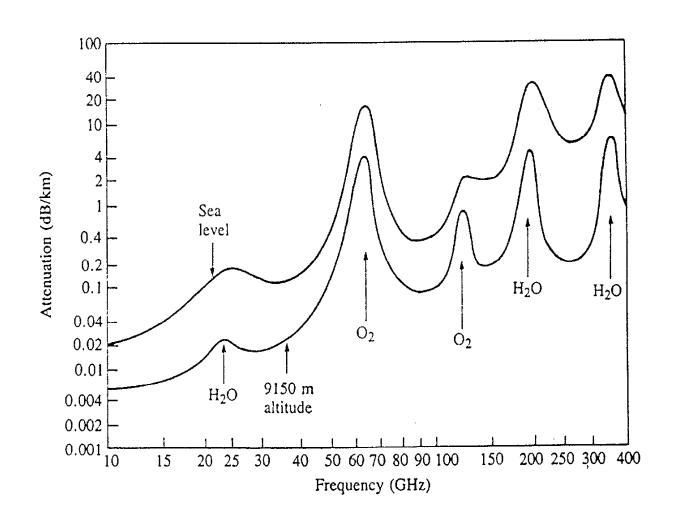
$$k = \omega \sqrt{\varepsilon \mu} = k_o$$



Properties of microwaves

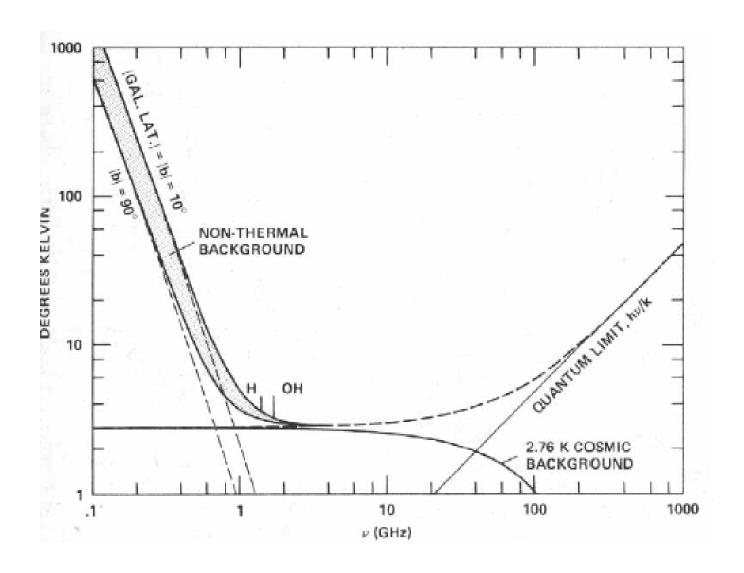
- Transparency of the atmosphere up to 10 GHz
- Electromagnetic noise Minimum between 1 and 10 GHz, + low noise amps

Atmosphere

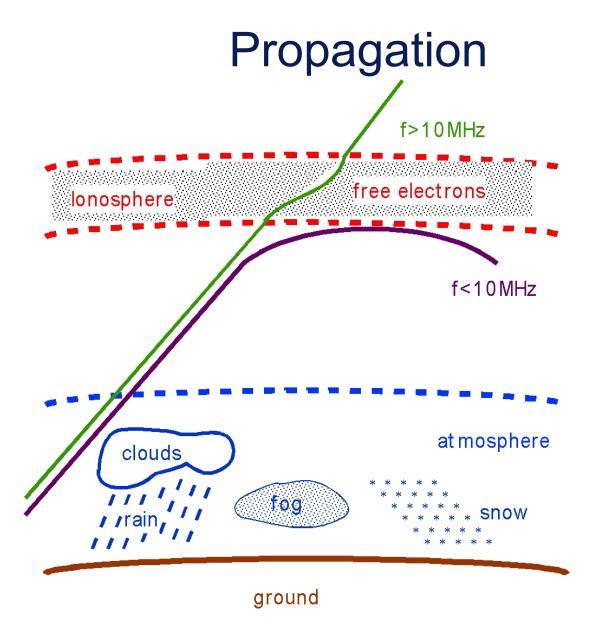

strategic use of the atmospheric absorption!

detection of pollution from satellites

Fig.3.2.1 Microwave absorption due to atmospheric gases



Atmosphere



Noise

Link with Mars

- Mars Pathfinder Mission: 1996
- Distance Earth-Mars: 228'000'000 km

Friis formula:

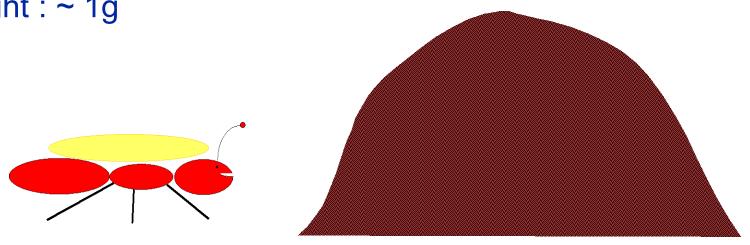
$$P_r = P_f \cdot G_1 \cdot G_2 \cdot (\lambda/4\pi L)^2$$

EPFL

From Earth to Mars

- Frequency : 7.175 GHz (λ = 41.8 mm)
- Terrestrial Antenna Gain: 4'265'795
 - $\emptyset = 70 \text{ m}$
- Satellite Antenna Gain: 13.8

- Emitted Power on Earth: 22 kW
 - (a very small car)
- Received power on Mars: 3.16 10⁻¹⁶ W
 - (Not really much)


From Mars to Earth

- Frequency : 8.425 GHz (λ = 35.6 mm)
- Terrestrial Antenna Gain: 25'118'864
- Satellite Antenna Gain: 141
- Power emitted on Mars: 13 W
 - (a low consumption halogen lamp)
- Received power on earth: 7.10⁻¹⁸ W
 - (nothing !!)

EPFL

Velocity: 10cm/s

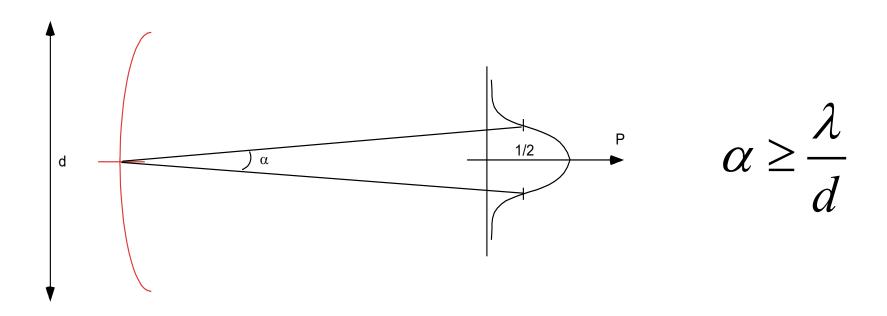
weight: ~ 1g

Power that the ant needs to develop: ~ 10⁻³ W

1 million billions time more than the received power on Earth !!!

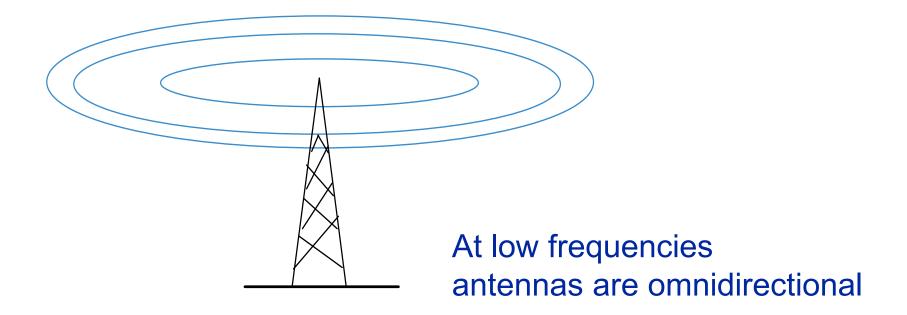
Properties of microwaves

- Directivity of the antennas
- Reflections on obstacles
 - Effective surfaces, radar
- Interaction with matter
 - Heating, measurement
- Non ionizing radiation
 - causing no mutation
- Stable oscillation frequencies
 - Atomic clocks and frequency references

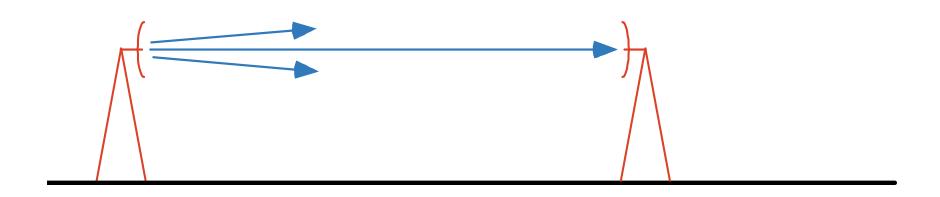


Definition of microwaves

Frequency (f)	300 MHz-300 GHz		
Period (T)	3 ns - 3 ps		
Wavelength (λ)	1 m - 1 mm		
Energy (hf)	1.2 10-6eV - 1.2 10-3eV		



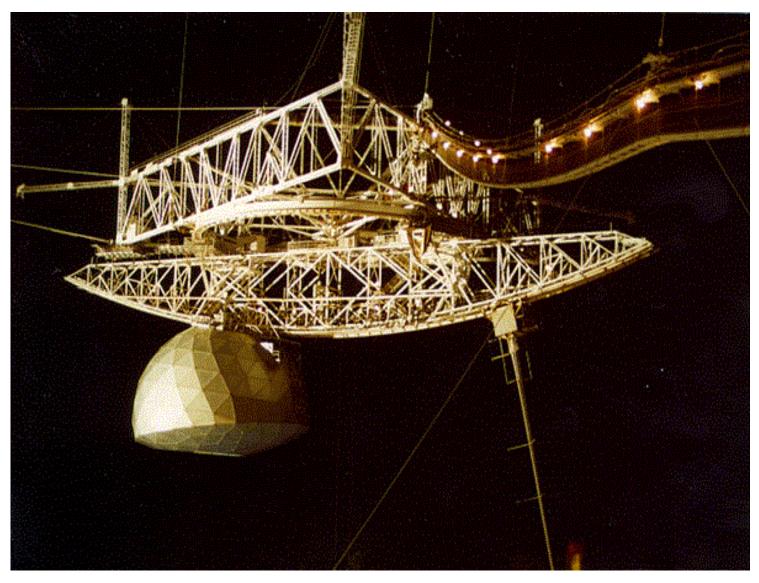
Directivity of antennas



Directivity of antennas

Directivity of antennas

At high frequencies, antennas are directive


Arecibo dish antenna

diameter: 305 m!

Arecibo feed

Google earth view

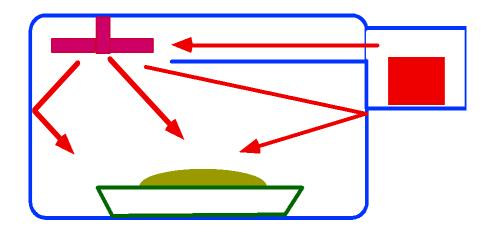
Arecibo beamwidth

• 50 MHz, λ =6m and α =1.12°

• 10GH, λ =3cm and α =0.0056°

Properties of microwaves

- Directivity of the antennas
- Reflections on obstacles
 - Effective surfaces, radar
- Interaction with matter
 - Heating, measurement
- Non ionizing radiation
 - causing no mutation
- Stable oscillation frequencies
 - Atomic clocks and frequency references

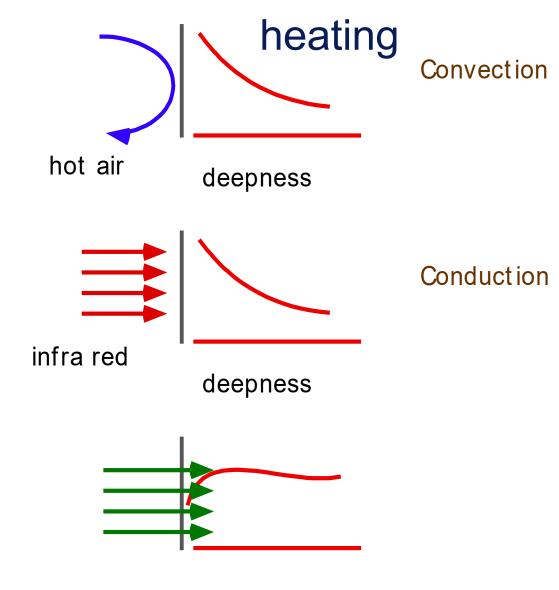


Definition of microwaves

Frequency (f)	300 MHz-300 GHz
Period (T)	3 ns - 3 ps
Wavelength (λ)	1 m - 1 mm
Energy (hf)	1.2 10-6eV - 1.2 10-3eV

Interaction with matter : microwave heating

The waves penetrate into the matter and generate heat inside



Interaction with matter: microwave heating

- Applicators :
 - Cavities
 - Progressive Wave
 - Slow wave
 - Antenna
- Principle :
- The wave is absorbed by the water. The absorption decreases when T increases

Interaction with matter: microwave

microwaves

EPFL

Interaction with matter: microwave heating. Advantages

- Good efficiency (50% of power transfer to the element which is heated)
- Selective heating
 - cereals or insects
 - electrons and ions
- Moderate cost and maintenance
- Less storage room needed as the heating cycle is shorter
- Less losses in the process
- No pre-heating needed

Interaction with matter: microwave heating. Drawbacks

- Costly to develop
- Impossible to grill
- Difficult to evacuate certain solvents needed in the printing industry
- Needs skilled workforce
- High security needed

Properties of microwaves

- Directivity of the antennas
- Reflections on obstacles
 - Effective surfaces, radar
- Interaction with matter
 - Heating, measurement
- Non ionizing radiation
 - causing no mutation
- Stable oscillation frequencies
 - Atomic clocks and frequency references

Definition of microwaves

Frequency (f)	300 MHz-300 GHz
Period (T)	3 ns - 3 ps
Wavelength (λ)	1 m - 1 mm
Energy (hf)	1.2 10-6eV - 1.2 10- 3eV

Biological effects: ionization

molecular cohesion energy

Type	kJ/mole	eV/atom
ionic	750	7800
dipolar	~20	207
Van der Waals	10	103
covalent		2,5

In microwaves, the energy of a photon is:

Biological effects: Thermal effects

- Limits exist since many years
 - USA: ~10 mW/cm2 = 100 W/m2
 - Russia : $\sim 10 \, \mu \text{W/cm2} = 0.1 \, \text{W/m2}$
- Diathermy : 1-10 kW/m2 !!
- Solar flux : 1 kW/m2 (at ground level)

Are electromagnetic waves dangerous?

(1)

Energy at a MICROSCOPIC level

 $\mathbf{E} = \mathbf{hf}$

(Planck's constant

times frequency)

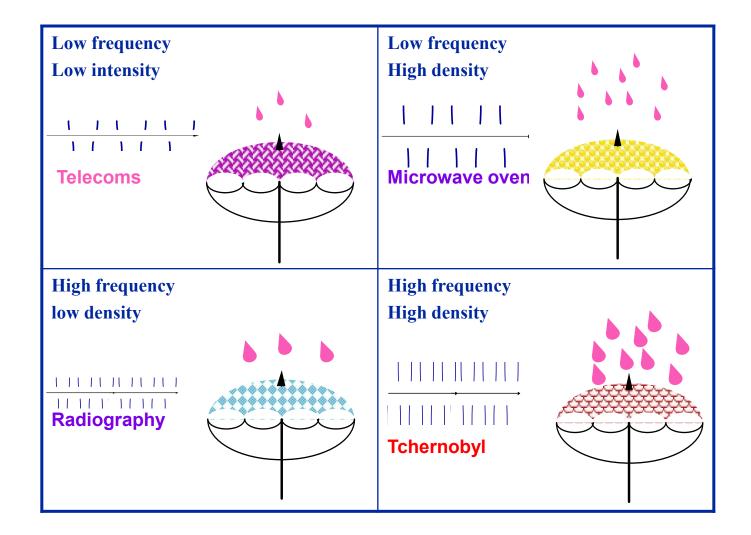
	Frequency	wavelength	protection factor
Radio FM	100 MHz	3 m	800'000
Natel	1 GHz	30 cm	80'000
TV Sat	10 GHz	3 cm	8000
Radar	100 GHz	3 mm	800
Infrared	10 THz	3 microns	8
Visible light	500 THz	600 nm	4
Ultraviolet UVA	1000 THz	300 nm	2
Ultraviolet UVB	10000 THz	30 nm	0.2
X Rays	Million THz	0.3 nm	0.0002
Gamma rays	more	less	less

Are electromagnetic waves dangerous?

(2)

Power density at a **MACROSCOPIC Level**

P = E H =


electric field x magnetic field

[mW/cm²]

In a microwave oven	500
Airport RADAR at 10 m	300
solar rays outside the atmosphere	140
Evident danger	>100
Systematic effects	>50
Sun during a nice ski day	10
FCC Public Exposure Standard	0.5
Good cell phone in the head	0.3
60 W bulb at 1 m	0.02
Good cell phone base station	5E-04
FM radio transmitter at 10 Km	1E-04
Sat. TV at street level	1E-06

Analogy Electromagnetic waves = Rain Frequency = size of drops; Puissance = density of drops

Biological effects: non thermal effects

- Controversial since 30 years
 - Do they exist? (probably yes)
 - Are they harmful ? (probably no)
- In doubt :
- Lower the acceptable limits